مقلد0

 دميدكه عضورهاى تجامل كرده و تحليل خود را ادامه دهند، فرض , A A
 به شكل زير مىنويسبم
$\dagger \Sigma M_{C}=0: \quad A_{x}(0,9 \mathrm{~m})-\left(\mathrm{r}_{0} \mathrm{kN}\right)(0, \wedge \mathrm{~m})=0$

$$
\begin{equation*}
A_{x}=+\mu_{0} \mathrm{kN} \tag{1.1}
\end{equation*}
$$

1.1

F.l مرورى كوتاه از روشهاى استاتيك

$$
\frac{F_{A B}}{r}=\frac{F_{B C}}{\theta}=\frac{r_{0} \mathrm{kN}}{r}
$$

$$
F_{A B}=\gamma_{0} \mathrm{kN} \quad F_{B C}=00 \mathrm{kN}
$$

وارد مى شوند برابر و در خلاف جهـت

 را اتادر مى سازد تامعين كنيم كه نيروى داخلى در بازوى $A B$ برابر $A B 0 \mathrm{kNN}$ الستر (

$$
\begin{array}{ll}
+\Sigma F_{x}=0: & A_{x}+C_{x}=0 \\
& C_{x}=-A_{x} \quad C_{x}=-\digamma_{0} \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0: & A_{y}+C_{y}-\mathrm{r}_{0} \mathrm{kN}=0 \\
& A_{y}+C_{y}=+r \circ \mathrm{kN} \tag{r.1}
\end{array}
$$

$$
\begin{equation*}
\ddagger \Sigma M_{B}=0: \quad-A_{y}(0, \wedge \mathrm{~m})=0 \quad A_{y}=0 \tag{F,1}
\end{equation*}
$$

$$
A=\gamma_{0} \mathrm{kN} \rightarrow \quad C_{x}=\gamma_{0} \mathrm{kN} \leftarrow \quad C_{y}=r_{0} \mathrm{kN} \uparrow
$$

 مسآيد. نـيرو وماى واردبـر بـين B، بـنترتيب،

.
Scanned by CamScanner
nm

 N/mr
 كيلوباسكال (kPa)، مكاباسكال (MPa)، و كيكاباسكال (GPa). داريم

$$
\begin{aligned}
1 \mathrm{kPa} & =10^{r} \mathrm{~Pa}
\end{aligned}=10^{r} \mathrm{~N} / \mathrm{m}^{r} .
$$

وقتى يكاهاى مرسوم .U.S را بدكار ببريم، نـيروى P P را مـعـو لاّ بـرحسبـ بوند (lb) يا كيلوبوند (kip) و سطح مفطع عرضى A را برحــب ايـنج مـربع

كيلويوند بر اينج مربع (ksi) است'

F.1 تحليل وطراحى

 مى BC نيروى Yا Yomm

مفروض استفاده مىكنيم. داريبم $P=F_{B C}=+\Delta 0 \mathrm{kN}=+00 \times 10^{r} \mathrm{~N}$
$\left.A=\pi r^{r}=\pi\left(\frac{Y \circ \mathrm{~mm}}{r}\right)^{r}=\pi\left(10 \times 10^{-r} \mathrm{~m}\right)^{r}=r \right\rvert\, \digamma \times 10^{-\eta} \mathrm{m}^{r}$ $\sigma=\frac{P}{A}=\frac{+00 \times 10^{r} \mathrm{~N}}{\mu 1 \% \times 10^{-1} \mathrm{~m}^{\gamma}}=+109 \times 10^{\circ} \mathrm{Pa}=+109 \mathrm{MPa}$

از آنجا كه مقدار بهدست آمده براى

 توسط اين باركذارى موزد قبول است. مطالعه دربارة تغيير شُكلها تحت بـارهـا

 بار مفروض، بى آنكه بيكربندى آن آن از بين برود و تغييرى ناكهانى آنى در آن صورت

 باركذارى مفروض قرار مى
 شكـل ا. 1.1

 برابر VkPa است،، و 1 تقريباً برابر VMPa استا

0

 F $F_{B C}$ F FC برايند نيرو ماى ابتدايى

$$
\begin{equation*}
\sigma=\frac{P}{A} \tag{0.1}
\end{equation*}
$$

شكل 1

شكل 1.1
Scanned by CamScanner

صفر ميل مىאند، تنس در نقطن: Q رابهدست مى آوريم:

$$
\begin{equation*}
\sigma=\lim _{\Delta A \rightarrow 0} \frac{\Delta F}{\Delta A} \tag{9.1}
\end{equation*}
$$

 1,P

$$
\begin{equation*}
\int d F=\int_{A} \sigma d A \tag{استبا}
\end{equation*}
$$

 اين مفدار با مقدار P. بارماى فشردهو و متمركز برابر باشـد. بنابراين، داريم،

$$
\begin{equation*}
P=\int d F=\int_{A} \sigma d A \tag{v.l}
\end{equation*}
$$

 بار بأدل. هرجند كه اين تنها اطلاعىى است كه مىتو توانيم از دانش استاتيك بهد-

 $\sigma_{\text {all }}=\frac{P}{A} \quad A=\frac{P}{\sigma_{\text {all }}}=\frac{00 \times 10^{r} \mathrm{~N}}{100 \times 10^{7} \mathrm{~Pa}}=0.00 \times 10^{-9} \mathrm{~m}^{r}$ بانيبر

$$
\begin{aligned}
& r=\sqrt{\frac{A}{\pi}}=\sqrt{\frac{000 \times 10^{-1} \mathrm{~m}^{r}}{\pi}}=1 r, 99 \times 10^{-r} \mathrm{~m}=1 r, 9 r \mathrm{~mm} \\
& d=r r=r \Delta, r \mathrm{~mm}
\end{aligned}
$$

Q. 1 باركذارى محورى؛ تنش عمودى

 عضو دونير بیى است و، بنابراين، نير وهاى F F C

 محورى بمه ما مىده:

$$
\begin{equation*}
\sigma=\frac{P}{A} \tag{0.1}
\end{equation*}
$$

نتطهاى بنهصوص از سطح متطع بائد.

 مثدار ميانكين تنس روى ري ΔA رابدست مى آوريم. با فرض اينكه ΔA به سمت

ا. 7 تنشهاى برشين

 میشود (شكل 10.1). با كذر مقطعى در نتطة C ميان نقاط اثر دو نـيرو آشكــل 18.1 (الف)]، نمودار قسمت AC نشان داده شـده در شكل 18.1 19. (ب) را بهدست

 برش P بر متطع عرضى A، ميانكين تنش برشى در مـقطع را بـهدست میى آوريم. توجه كنيد كه تنش برشى با حرف يونانى τ (tau) نشـان داده میىشود و مىنويسبم

$$
\begin{equation*}
\tau_{\mathrm{ave}}=\frac{P}{A} \tag{1.1}
\end{equation*}
$$

"، مقدار ميانگگِين تنش برشى در كل متطع

- تأكيد

دى بيان كرديم، توزيع تنتشهاى برشى در
است. برخا،
مقطع را نمىتوان يكنوانحت فرض كرد. هـانكونه كه در نصل 9 خـواهــيـد ديــلـ،

شكل 10.1

شكل

 محر

(ب)
شكل 19.1

تنش تكيه كاهی در اتصالها V. 1

 نالمى تنش
 ضضامت ورق و d تطر ميخ برج است، داريم

$$
\begin{equation*}
\sigma_{b}=\frac{P}{A}=\frac{P}{t d} \tag{11.1}
\end{equation*}
$$

I.1

 مستطيل به ابـاد مستطيلى به ابعاد

 داخل بك قلاب مضاعف جايكير است، در حالى كه ميله BC در نعطئ C C بـ قلاب

:14.1

(ب)

$$
\begin{equation*}
\tau_{\text {ave }}=\frac{P}{A}=\frac{F}{A} \tag{4.1}
\end{equation*}
$$

 كا برش برابر استبا

$$
\begin{equation*}
\tau_{\text {ave }}=\frac{P}{A}=\frac{F / \tau}{A}=\frac{F}{\tau A} \tag{1.01}
\end{equation*}
$$

M.

隹

 إبر استبا

$$
\tau_{\mathrm{ave}}=\frac{P}{A}=\frac{F / Y}{A}=\frac{F}{Y A}
$$

شكل

$$
\sigma=\frac{P}{\beta A}
$$

$$
\sigma_{b}=\frac{p}{d t}
$$

32

$$
\begin{aligned}
\left(e^{\operatorname{coc}-1} A\right. & =(15-1.6 \times 2) \times 1=11.8 \\
P & =8 \text { tor } \quad \rightarrow \quad \sigma_{2-2}=\frac{8 \times 1000}{11.8}=678 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}
\end{aligned}
$$

3

$$
\begin{aligned}
& A=15 \\
& p=0
\end{aligned} \quad \longrightarrow \sigma_{3-3}=0
$$

33

 .

 عودى

بيشتر شرح مى دهيبم.

ا.

 خطى متوقف مىكردد و ضريب اطمينان بهدست آملـه از معادله (TQ.1) تـخمين واقعى اطهينان در طراحیى داده شده را فراهم نمىكند. با ايـن وجــودد، روش تـنـش مجاز طراحی براساس كاربرد معادله ((YO.1) بهطود وسيعى كاربرد دارد. ج. انتخاب يك راه حل برای ضريب اطمينان. انتخاب ضريب اطمينان مورد استفاده در كاربردهاى مختلف يكى از مهمترين وظايف مهندس است. از يكسو، اكر ضريب اطمينان انتخاب شده خيلم كو جیك باشلد امكان شكست زيـاد است؛ از سوى ديگر، اگر ضريب اطمينان عمداً بزرگ انتخاب شود، نتيجه طراحى غير
 كاربرد معين، هستلزم بررسى و قضاوت مـهنلـسى بـراسـاس مـوارد مـتعلددى از جملa موارد زير است:
ا. تغيسراتى كد ممكن است در خواص عضو قابل توجهى بـهوجود آيــــ تـركيب
 توليد هستند. علاوه بر اين ممكن است در هنگام گرمايش يا يا بر اثـر تـغيير شكــل احتمالى ماده در هنگام انبار كردن، حمل و نقل، يا ساخت ماده ماده تغيير كند. r.r. تعداد بارگذاريها يعىك در عمر سازه يا ماشين انتظار مىرود. براى بيشتر مواد،

منجر شود (بخشَ V.Y V. بينـيد). س. نوع بارگذاريها يمكه درطراحى درنظرگرفته شلده است، يا در آ ينله ممكن است اتفاق بيفتل. تعداد كمى از بارگذاريها بـا دقت كــامل مشــخص مـى شـونـلـ ــ اغـلـب بارگذاريها در طراحى تخمينهاى مهندسىانل. بـهعلاوه دگـرگوتى بـا تـغييرهاى بعلى كاربرد مـمكن است مـوجب تـغييراتـى در بـارگذارى واقـعى شــود. اگـر

اطمينان بالاتر ضرورى است.
 مى شككنتل و معمولاً نشانهاى از نزديكـبودن زمان فروريـختگى وجـود نــدارد. ا; سوى ديگر، مواد شكل جذير ماننل فولاد سـاختمانى، چس از شكـست در مـعرضر
 بار اضافى وجود دارد. با وجود اين، اغلبكمانش يا پايلارى شكستها نا گهانىاذ خواه ماده شكننده باشلد يا نباشـلـ. وقتى احتمال شكست نا گهانى مو جود باشلد، با
 ه. علم تطعيت ناشى از روشهاى تحليل . هـمهـ روشـهای طـراحـى بـراسـا فرضهاى ساده كننده بنا شدهاند، طورى كـه نـتيجه مـحاسبات تـنشهها، تـقريبر تتشهاى واقعى است.
\& ¢. فرسودگى كه به مرور زمان ممكن است بر اثر نگهلارى نادرست يا علل
 مشكل است، ضريب اطمينان بزرگترى لازم است.

ا. در بعضى از رشتههاى مـهندسى، مـخصوصاً مـهندسىى هـوانـوردى، حـريماط بهجاى ضريب اطمينان به كار برده مىى شـود. حريم اططينان بـهحورت الخـريبا منهاى يكه تعريف مى شود؛ يعنى

تنش كه بهعنو ان استحكام نها يع دركثـث ماده شـنانته میشـود، عبارت است از

$$
\sigma_{U}=\frac{P_{U}}{A}
$$

(Yr.I)
جند ين آزمون متداول قابل قبول براى تعيّن تنش برشى نها يع، يـا اسستحكام

 از نتسيم بار نهايى بر مساحت كل كه بـرسُ بـر آن ايسجاد شــده بـهدست مـى آيلـ. يادآورى مىكنيم كه در مورد برش ساده، اين مساحت مهان مساحت سطع معطع A نمونهاست، در صورتى كه در برش مضاعف اين مساحت دو برابـر مسـاحت
سطح مeطع است.

ب. بار مجاز و تنش مجاز؛ ضريب اطمبيناذ. بيشترين بارى كهي يك عضو سازه

 ضريب اطمبنان مىنامنل '. داريم
بار مجازيى

نعرين ديگرى از ضريب اطمينان براساس استفاده از كاريرد تنـنها وجود دارد:

$$
\begin{equation*}
\text { تنش مجازيى } \text { تنـي }=\text { = = ضريب اطمينان } \tag{ץ0.1}
\end{equation*}
$$

شF. FM

منك 1.1 .1
 وقتى كه تع منجر شود سا. نوع
اتفاق بيفتلـ.
بارگذاريها
بعدى كار
بارگذارى
اطمينان با
ن.
مى شكنتا سوى ديً
تغيير شَ،
بار اضافـ,
خواهماد
ضريب| .

فرضهاء
تنسـهاى

$$
\begin{equation*}
\text { تنشّ مجازيى } \text { تنهي = F.S. = ضريب اطمينان } \tag{0.1}
\end{equation*}
$$

.9
غيرقابل
مشكل
1.د. بهجاى منهاى

شك

شكل 1.1 .1

 vivuslebei li, if 15 wo no enstatation

WCerific
\& Enviroment, Material

$$
\cdot \operatorname{cin}^{\prime}-\sin =\frac{\cos ,!}{-6 \pi,!}
$$

مسئله نمونه
ميله بست فولادى نثـان داده شده برای حمل نيروى كشُشی برابر P
 به وار رنته، حداكثر تنـّهاى مجاز جنين است:

$$
\tau=\frac{F_{1}}{A}=\frac{90 \mathrm{kN}}{\frac{1}{r} \pi d^{r}} \quad 100 \mathrm{MPa}=\frac{9 \cdot \mathrm{kN}}{\frac{1}{\psi} \pi d^{r}} \quad \quad d=r v, \varepsilon_{\mathrm{mm}} \quad, j
$$

(3)

相 $d=Y \wedge \mathrm{~mm}$
 $\tau_{b}=\frac{P}{t d}=\frac{1 Y \circ \mathrm{kN}}{(\circ, \circ r \circ \mathrm{~m})(\circ, \circ \gamma \wedge \mathrm{m})}=Y I F \mathrm{MPa}<r \omega_{0} \mathrm{MPa}$
$\underset{t d}{P}<\sigma_{j B} \rightarrow \frac{P}{t \times \sigma_{s}} \leqslant d$ ~in ب.

مسئله نمونه

0

+ $\Sigma M_{C}=0: \quad P(0,9 \mathrm{~m})-(0 \circ \mathrm{kN})(0, r \mathrm{~m})-(10 \mathrm{kN})(0,9 \mathrm{~m})=0 \quad P=F \circ \mathrm{kN}$
$\Sigma F_{x}=0: \quad C_{x}=4 \circ \mathrm{kN} \quad C=\sqrt{C_{x}^{\gamma}+C_{y}^{\gamma}}=\mathrm{V} \varphi, \mu \mathrm{kN}$
$\Sigma F_{y}=\circ: \quad C_{y}=90 \mathrm{kN}$
الف. ميله كنترل AB. حون ضريب اطمينان بايد זر بّباشد، تنش مجاز برابر است با

$$
\sigma_{\mathrm{all}}=\frac{\sigma_{U}}{F . S .}=\frac{900 \mathrm{MPa}}{\mu, \mu}=|\Lambda|, \wedge \mathrm{MPa}
$$

ای P

$$
\begin{aligned}
& A_{\rho j y}=\frac{\pi}{Y} d_{A B}^{r}=Y Y 0 \times 10^{-\eta} \mathrm{m}^{r} \\
& d_{A B}=19, V \vDash \mathrm{~mm}
\end{aligned}
$$

نظريات طراحى 19

$$
\begin{aligned}
& \text { ب. برش در جين C. براى ضريب اطمينان ّارّ، داريم } \\
& \tau_{\text {all }}=\frac{\tau_{U}}{F . S .}=\frac{r 0 \circ \mathrm{MPa}}{r ر^{r}}=109,1 \mathrm{MPa}
\end{aligned}
$$

جون بين در برش مضاعف قرار دارد، مىنويسيم

$$
\begin{aligned}
& A_{\text {py }}=\frac{C / r}{\tau_{\text {all }}}=\frac{(V \varepsilon, r \mathrm{kN}) / r}{109,1 \mathrm{MPa}}=r q \circ \mathrm{~mm}^{r} \\
& A_{\text {py }}=\frac{\pi}{r} d_{C}^{r}=r \varphi \circ \mathrm{~mm}^{r} \quad d_{C}=r 1, r \mathrm{~mm} \quad \text { مورد }: d_{C}=r Y \mathrm{~mm}
\end{aligned}
$$

اندازه بزركتر بعدى بين مجاز به قطر YY mm است كه بايداز آن استغاده شود.

$$
A_{\mathrm{p}} \mathrm{y}=\frac{C / Y}{\sigma_{\text {all }}}=\frac{(V q, \Gamma \mathrm{kN}) / r}{r o 0 \mathrm{MPa}}=1 r V, r \mathrm{~mm}^{r}
$$

$$
\begin{aligned}
& t=0, V \wedge \mathrm{~mm} \text { بنابراين } \quad \text { بیر } \\
& \text { مورد استفاده : مو } t=9 \mathrm{~mm}
\end{aligned}
$$

تير صلب BCD توسط بِخحهايى در B به ميلهُ كنترل و در C به سيلندر هيدروليكى و در D D به تكيه كاه ثابت متصل الست．تطر بيجهاى به كار رفته الز $d_{A}=\frac{V}{19}$ in in

 بهطور جداكانه درنظر مىكيريم．
نمودار جسم آزاد：تير BCD ．نخست نيروى وارد بر C C را برحسب نيروهاى وارد بر B و D B تعيين مىكنيم． f $\Sigma M_{D}=0: B(1 \% \mathrm{in})-C(\wedge \mathrm{in})=0$
$C=1, V \Delta \circ B$
＋$\Sigma M_{B}=0:-D(1 ץ \mathrm{in})+C(\xi \mathrm{in})=0$

$$
\begin{equation*}
C=Y, m \pi D \tag{1}
\end{equation*}
$$

ميله كترل．بهازاى ضريب اطمينان مرّاداريم

$$
\sigma_{\text {all }}=\frac{\sigma_{U}}{F . S .}=\frac{9 \circ \mathrm{ksi}}{r_{\rho}}=r_{0} \mathrm{ksi}
$$

نيروى مجاز در ميله كنترل برابر است با

$$
\begin{aligned}
& B=\sigma_{\text {all }}(A)=\left(Y_{\circ} \mathrm{ksi}\right) \frac{1}{r} \pi\left(\frac{V}{19} \mathrm{in}\right)^{r}=r, 01 \mathrm{kips} \\
& \text { باستفادهاز معادله (1) بيشترين مقدار مجاز در C رابهدست مى آوريم: } \\
& \left.C=1, v \Delta \circ B=1, V \Delta_{\circ}(\Gamma, \circ) \mathrm{kips}\right) \\
& C=\Delta, r \vee \mathrm{kips} \triangleleft
\end{aligned}
$$

بيج در بر نيروى B وارد بر يهج برابر است با

$$
\begin{aligned}
& C=1, V \Delta \circ B=1, V \Delta \circ(Y, 9 Y \text { kips }) \quad \text { (1) Whem jl } \\
& \text { : } D=B=Y \text { است. از معادله } 14 \text { kip } \quad C=0,10 \text { kips } \checkmark
\end{aligned}
$$

$$
\begin{aligned}
& \text { بتج در C. } C \\
& \mathrm{C}=\mathrm{F}_{\mathrm{r}}=\Upsilon\left(\tau_{\text {all }} A\right)=\Upsilon\left(1 r_{, ~ \mu} \mu \mathrm{ksi}\right)\left(\frac{1}{\mathrm{r}} \pi\right)\left(\frac{1}{\mathrm{r}} \mathrm{in}\right)^{\gamma} \\
& C=0, \text { mkips } \text {, }
\end{aligned}
$$

 كنبابِدكرجكترين شتلار آن بنى

 میآيد:

$$
\begin{equation*}
\sigma=\frac{F}{A_{\theta}} \quad \tau=\frac{V}{A_{\theta}} \tag{Ir.1}
\end{equation*}
$$

 تفطع عمد بر عضو است، بهدست مىآوريم

$$
\begin{array}{ll}
\sigma=\frac{P \cos \theta}{A \cdot / \cos \theta} & \tau=\frac{P \sin \theta}{A_{\cdot} / \cos \theta} \\
\sigma=\frac{P}{A_{.}} \cos ^{\curlyvee} \theta & \tau=\frac{P}{A_{\cdot}} \sin \theta \cos \theta \tag{14.1}
\end{array}
$$

$$
\begin{equation*}
\sigma_{m}=\frac{P}{A .} \tag{10.1}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{m}=\frac{P}{A .} \sin 40^{\circ} \cos 40^{\circ}=\frac{P}{Y A .} \tag{19.1}
\end{equation*}
$$

 : $P / \Upsilon A$. σ^{\prime}

$$
\begin{equation*}
\sigma^{\prime}=\frac{P}{A .} \cos ^{r} 40^{\circ}=\frac{P}{r A} \tag{iv.l}
\end{equation*}
$$

نتايج بهدست آمدهاز م معادلمهاى (10.1)، (19.1) و (1V.1) بططرر ترسبا
 تنس عـودى . ${ }^{\text {ت }}$

(ب) تنش در 0 (ب)

$\theta=-45^{\circ}$;

$\theta=45^{\circ}$ ر

شكل

 (ج) (ج)، داديم

$$
\begin{equation*}
F=P \cos \theta \quad V=P \sin \theta \tag{Ir.1}
\end{equation*}
$$

(ب)

(e)

(s)

شكلـ

8, 先/rsembor

$$
\sigma=\frac{N}{A \theta} \Rightarrow \sigma=\frac{P G \theta}{A / G \theta} \Rightarrow \sigma=\frac{P}{A} c_{1}^{2} \theta
$$

$$
\tau=\frac{V}{A \theta} \Rightarrow T=\frac{P \sin \theta}{A / G \theta} \Rightarrow \tau=\frac{P}{A} \sin \theta a \theta
$$

$$
\Longrightarrow\left\{\begin{array}{l}
\sigma=\sigma_{0} \cdot c^{2} \theta \\
T=\frac{\sigma_{0}}{2} \sin 2 \theta
\end{array}\right.
$$

$$
\begin{aligned}
& \sigma_{\text {Max }}=\sigma_{0} \\
& \tau_{\text {Max }}=\frac{\sigma_{0}}{2}
\end{aligned}
$$

どき，（sis is，A（ －－aby $70 \times 110 \mathrm{~mm}^{2-}$－infú
 ，h， e－

$$
\begin{aligned}
& \theta=90-20=70 \quad T=\frac{\sigma_{0}}{2} \sin 2 \theta=500 \times 10^{-3}(p \mathrm{Mpa}) \\
& \Rightarrow \sigma_{0}=\frac{P}{A} \Rightarrow P=\frac{500 \times 10^{-3} \times 2 \times(70 \times 110)}{\sin (2 \times 70)}=11979 \mathrm{~N}=12 \mathrm{kN}
\end{aligned}
$$

c

$$
T_{\text {allcuabble }}=\frac{350}{3.5}=100 \mathrm{Npa}
$$

$$
\begin{aligned}
& \sum M_{c}=0 \Longrightarrow T_{15}\left(0.4 \sin 30+0.5 C_{1} 30\right)-15\left(1.1 \times C_{1} 40\right) \\
& -15(0.5 \sin 40)=0 \Rightarrow T_{15}=27.58 \mathrm{kN} \\
& \Sigma F_{x}=0 \Rightarrow-15 \sin 40+27.58 a_{130}+C_{x}=0 \\
& \Rightarrow C x=-14.24 \\
& \Sigma f_{y}=0 \Rightarrow-15 C_{1} 40+T_{1 s} \operatorname{Sin} 30+C_{y}=0 \\
& \Rightarrow c_{y}=-2.3 \mathrm{icN} \\
& \text { Clay } c=14.42 \mathrm{kN} \\
& T=\frac{C / 2}{A}=\frac{14.42 \times 10^{3}}{2 \times \pi\left(d^{2}\right) / 4}=100 \Rightarrow d=9.58 \mathrm{~mm}
\end{aligned}
$$

 sif Junc aic, $A B C$, $0, \omega_{0}, \boldsymbol{\gamma}$

(ive) 10 mm

$$
\begin{aligned}
& F_{c}=14.1 \mathrm{kN}, \stackrel{U}{3} \\
& \sim \sigma_{A B}=\frac{F A}{A_{A}}=\frac{11.2 \times 10^{3}}{6 \times 15}=124 \mathrm{MPa} \\
& \text { Sus, } \sigma_{\text {AB }}=\frac{F A}{A_{\text {net }}}=\frac{11.2 \times 10^{3}}{2(25-10) 5}=74.7 \mathrm{Mpa} \\
& \cdots \delta_{\text {BC }}=\frac{F_{C}}{A}=\frac{14.1 \times 10^{3}}{6 \times 15}=156.67 \mathrm{Mpa}, \cdots
\end{aligned}
$$

$$
\text { sos, } \sigma_{B C}=\frac{F_{c}}{A}=\frac{19.1 \times 10^{3}}{2 \times 25 \times 5}=56.4 \mathrm{mpa} \text { ospacipat net }
$$

: 5, cienem) viju

$$
\begin{aligned}
& \sigma_{b}=\frac{F_{c}}{A}=\frac{14.1 \times 10^{3}}{2 \times 10 \times 5}=141 \mathrm{Mpa} \\
& \sigma_{b}=\frac{F_{c}}{A}=\frac{14.1 \times 10^{3}}{10 \times 6}=235 \mathrm{Mpa} \\
& T=\frac{P}{2 A}=\frac{14.1 \times 10^{3}}{2 \times \pi 101^{2} / 4}=89.8 \mathrm{Mpa}
\end{aligned}
$$

 $\Sigma F_{y}=0$

$$
B y=65 \mathrm{~N} \quad A y=85 \mathrm{~N}
$$

$$
\left\{\begin{array}{l}
v_{2}-v_{1}=\int q d x \\
M_{2}-M_{1}=\int v d x
\end{array}\right.
$$

6 Beer-Jöhnston jus entilus. i,jos: $55,49,41,36,26,24,20,18,14,8$ $7, j=9: \quad 66,30,20,19$

$$
\overrightarrow{\Delta p}=\overrightarrow{\Delta p}_{x} i+\overrightarrow{\Delta p_{y}} \hat{j}+\overrightarrow{\Delta p_{z}} \hat{k}
$$

 i, जi, 说i

Mouni=

$$
\left(q_{1} 1_{2}, j_{\mu}\right) c_{x x}=\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{x}^{1}}{\Delta A}
$$

(Normal stress)

$$
\left.\tau_{x y}=\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{y}}{\Delta A}, 3\right),,(1,), 1, c
$$

$$
\tau_{x z}=\operatorname{li}_{\Delta A \rightarrow} \frac{\Delta P_{z}}{\Delta A}
$$

$$
1 p a=\mathrm{N} / \mathrm{m}^{2}
$$

$$
1 \mathrm{MPa}=10 \mathrm{~kg} / \mathrm{cm}^{2}
$$

$$
\begin{aligned}
& p s i=l b / \mathrm{in}^{2} \rightarrow\left\{\begin{array}{l}
i n=25.4 \mathrm{~mm} \\
l b=454 \mathrm{gr}
\end{array}\right. \\
& \sigma_{y y}=l_{\Delta A \rightarrow 0} \frac{\Delta P_{y}}{\Delta A} \quad \tau_{y z}=\frac{l}{\Delta A \rightarrow 0} \frac{\Delta P_{z}}{\Delta A}
\end{aligned}
$$

 iver
$0 ;\left[\begin{array}{lll}\sigma_{x x} & \tau_{x y} & \tau_{x z} \\ \tau_{y x} & \sigma_{y y} & \tau_{y z} \\ \tau_{z x} & \tau_{z y} & \sigma_{z z}\end{array}\right] \leadsto=1, y^{9}(1,1)$
 (!!) $\int_{-5}^{0} 5$ 8 (Exact Define)

$$
\sigma=\lim _{\Delta A \rightarrow 0} \frac{\Delta P}{\Delta A} \quad \square \quad b, \bar{\sigma}=\frac{P}{A}
$$

ins (iss)

$$
P \Perp P \quad C=\frac{P}{P} \quad \tau=\frac{F}{A}=\frac{P}{A}
$$ $\mathrm{Mi}_{\rightarrow p} \mathrm{men}$ - , en, posies

$$
॥
$$

$$
4,05=5
$$

$$
\begin{aligned}
& \sigma_{x}=\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{x}}{\Delta A} \\
& T_{x y}=\lim _{\Delta A \rightarrow} \frac{\Delta P_{y}}{\Delta A} \\
& T_{x z}=\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{z}}{\Delta A}
\end{aligned}
$$

